Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Placenta ; 103: 188-198, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160252

RESUMO

INTRODUCTION: Amino acid transport across the placenta is crucial for fetal growth. In rodent models, the visceral yolk sac (referred to as yolk sac hereafter) is also likely to contribute to fetal amino acid provision. System L amino acid transporters mediate the transport of essential amino acids. System L activity is mediated by light chains LAT1 (Slc7a5) and LAT2 (Slc7a8) which form functional complexes by heterodimeric linkage to CD98 (Slc3a2). LAT4 (Slc43a2) is monomeric, possessing overlapping amino acid substrate specificity with LAT1 and LAT2. METHODS: This study investigates the expression of these LAT subtypes in fetus-matched rat placenta and yolk sac. RESULTS: Slc7a5, Slc7a8 and Slc43a2 transcripts were expressed in placenta and yolk sac with similar expression patterns between sexes. LAT1 expression was significantly higher in placenta than yolk sac. Conversely, LAT2 and LAT4 expression was significantly higher in yolk sac than placenta; CD98 expression was comparable. LAT1, LAT2, LAT4 and CD98 were distributed to rat placental labyrinth zone (LZ) and junctional zone (JZ). LAT1 and LAT4 demonstrated higher expression in LZ, whilst LAT2 was more intensely distributed to JZ. LAT1, LAT2, LAT4 and CD98 were expressed in yolk sac, with punctate LAT1 staining to endodermal cell cytoplasm, contrasting with the intense LAT2, LAT4 and CD98 endodermal cell basolateral distribution, accounting for greater LAT2 and LAT4 expression in yolk sac compared to placenta. CONCLUSION: LAT1, LAT2 and LAT4 are expressed in rat placenta and yolk sac implicating a combined role for these LAT subtypes in supporting fetal growth and development.


Assuntos
Sistema L de Transporte de Aminoácidos/genética , Placenta/metabolismo , Saco Vitelino/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema L de Transporte de Aminoácidos/classificação , Sistema L de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Feminino , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar
2.
Int J Mol Sci ; 18(8)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786956

RESUMO

The organic mercury compound methylmercury (MeHg) is able to target the fetal brain. However, the uptake of the toxicant into placental cells is incompletely understood. MeHg strongly binds to thiol-S containing molecules such as cysteine. This MeHg-l-cysteine exhibits some structural similarity to methionine. System L plays a crucial role in placental transport of essential amino acids such as leucine and methionine and thus has been assumed to also transport MeHg-l-cysteine across the placenta. The uptake of methylmercury and tritiated leucine and methionine into the choriocarcinoma cell line BeWo was examined using transwell assay and small interfering (si)RNA mediated gene knockdown. Upon the downregulation of large neutral amino acids transporter (LAT)2 and 4F2 cell-surface antigen heavy chain (4F2hc), respectively, the levels of [³H]leucine in BeWo cells are significantly reduced compared to controls treated with non-targeting siRNA (p < 0.05). The uptake of [³H]methionine was reduced upon LAT2 down-regulation as well as methylmercury uptake after 4F2hc silencing (p < 0.05, respectively). These findings suggest an important role of system L in the placental uptake of the metal. Comparing the cellular accumulation of mercury, leucine, and methionine, it can be assumed that (1) MeHg is transported through system L amino acid transporters and (2) system L is responsible for the uptake of amino acids and MeHg primarily at the apical membrane of the trophoblast. The findings together can explain why mercury in contrast to other heavy metals such as lead or cadmium is efficiently transported to fetal blood.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Compostos de Metilmercúrio/metabolismo , Sistema L de Transporte de Aminoácidos/genética , Linhagem Celular Tumoral , Colforsina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Leucina/metabolismo , Metionina/metabolismo
3.
Thromb Haemost ; 117(7): 1402-1411, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28382373

RESUMO

The system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.


Assuntos
Sistema L de Transporte de Aminoácidos/antagonistas & inibidores , Sistema L de Transporte de Aminoácidos/sangue , Células Endoteliais/fisiologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Sistema L de Transporte de Aminoácidos/genética , Aminoácidos Cíclicos/farmacologia , Animais , Benzoxazóis/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Cisteína/análogos & derivados , Cisteína/farmacologia , Células Endoteliais/efeitos dos fármacos , Deformação Eritrocítica/efeitos dos fármacos , Deformação Eritrocítica/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Leucina/farmacologia , Camundongos , Camundongos Nus , RNA Mensageiro/sangue , RNA Mensageiro/genética , Reticulócitos/fisiologia , S-Nitrosotióis/sangue , S-Nitrosotióis/farmacologia , Tirosina/análogos & derivados , Tirosina/farmacologia
4.
Eur J Nucl Med Mol Imaging ; 44(5): 812-821, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27900521

RESUMO

PURPOSE: F-FDOPA is a highly sensitive and specific radiopharmaceutical for pheochromocytoma and paraganglioma (PPGL) imaging. However, 18F-FDOPA might be falsely negative in these tumors, especially those related to mutations in succinate dehydrogenase genes (SDHx). The aim of the present study was to evaluate the relationship between expression of L-DOPA transporters and 18F-FDOPA PET imaging results in PPGL. METHODS: From 2007 to 2015, 175 patients with non-metastatic PPGL were evaluated by 18F-FDOPA PET/CT for initial diagnosis/staging and follow-up. 18F-FDOPA PET/CT was considered as falsely negative for at least one lesion in 10/126 (8%) patients (two sporadic, six SDHD, two SDHB PPGLs). The mRNA and protein expression levels of CD98hc and LATs were evaluated in samples with different genetic backgrounds and imaging phenotypes. The qRT-PCR and immunohistochemical analyses were performed in 14 and 16 tumor samples, respectively. RESULTS: The SDHx mutated samples exhibited a significant decrease in mRNA expression of LAT3 when compared to sporadic PPGLs (P = 0.042). There was also a statistical trend toward decreased CD98hc (P = 0.147) and LAT4 (P = 0.012) levels in SDHx vs sporadic PPGLs. No difference was observed for LAT1/LAT2 mRNA levels. LAT1 protein was expressed in 15 out of 16 (93.75%) SDHx tumors, regardless of the 18F-FDOPA positivity. LAT1 and CD98hc were co-expressed in 6/8 18F-FDOPA-negative PPGLs. In contrast, in one case with absence of LAT1/CD98hc, 18F-FDOPA uptake was positive and attributed to LAT4 expression. CONCLUSIONS: We conclude that down-regulation of LAT1/CD98hc cannot explain the imaging phenotype of SDHx-related PPGLs. A reduced activity of LAT1 remains the primary hypothesis possibly due to a modification of intracellular amino acid content which may reduce 18F-FDOPA uptake.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Sistema L de Transporte de Aminoácidos/genética , Di-Hidroxifenilalanina/análogos & derivados , Genótipo , Paraganglioma/diagnóstico por imagem , Feocromocitoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias das Glândulas Suprarrenais/genética , Idoso , Reações Falso-Negativas , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Paraganglioma/genética , Feocromocitoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Succinato Desidrogenase/genética
5.
Cancer Sci ; 107(10): 1499-1505, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27465934

RESUMO

System l amino acid transporter 1 (LAT1) is highly expressed in various types of human cancer, and contributes to cancer growth and survival. Recently, we have shown that LAT1 expression is closely related to the growth and aggressiveness of esophageal cancer, and is an independent marker of poor prognosis. However, it remains unclear whether LAT1 inhibition could suppress esophageal cancer growth. In this study, we investigated the tumor-suppressive effects of the inhibition of LAT1. Both LAT1 and CD98, which covalently associates to LAT1 on the membrane, were expressed in human esophageal cancer cell lines KYSE30 and KYSE150. Quantitative PCR analysis showed that the expression of LAT1 was much higher than other subtypes of LAT. A selective inhibitor of LAT, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), suppressed cellular uptake of l-14 C-leucine and cell proliferation in a dose-dependent manner. It also suppressed phosphorylation of mammalian target of rapamycin, 4E-BP1, and p70S6K protein, and induced cell cycle arrest at G1 phase. These results suggest that suppression of both mammalian target of rapamycin signaling and cell cycle progression is involved in BCH-induced growth inhibition. In tumor-bearing mice, daily treatment with BCH significantly delayed tumor growth and decreased glucose metabolism, indicating that LAT1 inhibition potentially suppresses esophageal cancer growth in vivo. Thus, our results suggest that LAT1 inhibition could be a promising molecular target for the esophageal cancer therapy.


Assuntos
Sistema L de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Sistema L de Transporte de Aminoácidos/genética , Sistema L de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Animais , Antineoplásicos/administração & dosagem , Transporte Biológico/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Proteína-1 Reguladora de Fusão/genética , Proteína-1 Reguladora de Fusão/metabolismo , Perfilação da Expressão Gênica , Humanos , Lactato Desidrogenases/metabolismo , Masculino , Camundongos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Mol Endocrinol ; 56(3): 175-87, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26647387

RESUMO

The branched-chain amino acids (BCAA) leucine, isoleucine and valine, are essential amino acids that play a critical role in cellular signalling and metabolism. They acutely stimulate insulin secretion and activate the regulatory serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1), a kinase that promotes increased ß-cell mass and function. The effects of BCAA on cellular function are dependent on their active transport into the mammalian cells via amino acid transporters and thus the expression and activity of these transporters likely influence ß-cell signalling and function. In this report, we show that the System-L transporters are required for BCAA uptake into clonal ß-cell lines and pancreatic islets, and that these are essential for signalling to mTORC1. Further investigation revealed that the System-L amino acid transporter 1 (LAT1) is abundantly expressed in the islets, and that knockdown of LAT1 using siRNA inhibits mTORC1 signalling, leucine-stimulated insulin secretion and islet cell proliferation. In summary, we show that the LAT1 is required for regulating ß-cell signalling and function in islets and thus may be a novel pharmacological/nutritional target for the treatment and prevention of type 2 diabetes.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Células Secretoras de Insulina/metabolismo , Transdução de Sinais , Sistema L de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Expressão Gênica , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
7.
Reprod Biol Endocrinol ; 13: 57, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26050671

RESUMO

BACKGROUND: System L transporters LAT1 (SLC7A5) and LAT2 (SLC7A8) mediate the uptake of large, neutral amino acids in the human placenta. Many System L substrates are essential amino acids, thus representing crucial nutrients for the growing fetus. Both LAT isoforms are expressed in the human placenta, but the relative contribution of LAT1 and LAT2 to placental System L transport and their subcellular localisation are not well established. Moreover, the influence of maternal body mass index (BMI) on placental System L amino acid transport is poorly understood. Therefore the aims of this study were to determine: i) the relative contribution of the LAT isoforms to System L transport activity in primary human trophoblast (PHT) cells isolated from term placenta; ii) the subcellular localisation of LAT transporters in human placenta; and iii) placental expression and activity of System L transporters in response to maternal overweight/obesity. METHODS: System L mediated leucine uptake was measured in PHT cells after treatment with si-RNA targeting LAT1 and/or LAT2. The localisation of LAT isoforms was studied in isolated microvillous plasma membranes (MVM) and basal membranes (BM) by Western blot analysis. Results were confirmed by immunohistochemistry in sections of human term placenta. Expression and activity System L transporters was measured in isolated MVM from women with varying pre-pregnancy BMI. RESULTS: Both LAT1 and LAT2 isoforms contribute to System L transport activity in primary trophoblast cells from human term placenta. LAT1 and LAT2 transporters are highly expressed in the MVM of the syncytiotrophoblast layer at term. LAT2 is also localised in the basal membrane and in endothelial cells lining the fetal capillaries. Measurements in isolated MVM vesicles indicate that System L transporter expression and activity is not influenced by maternal BMI. CONCLUSIONS: LAT1 and LAT2 are present and functional in the syncytiotrophoblast MVM, whereas LAT2 is also expressed in the BM and in the fetal capillary endothelium. In contrast to placental System A and beta amino acid transporters, MVM System L activity is unaffected by maternal overweight/obesity.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Sobrepeso/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Adulto , Sistema L de Transporte de Aminoácidos/genética , Feminino , Humanos , Obesidade/genética , Obesidade/metabolismo , Sobrepeso/genética , Gravidez , Nascimento a Termo/metabolismo
8.
Drug Metab Pharmacokinet ; 27(3): 317-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22185814

RESUMO

We investigated the regulation of L-type amino acid transporter 1 (LAT1) in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells) in response to glucose deprivation. The amounts of LAT1 and 4F2 heavy chain (4F2hc) mRNA in TR-iBRB2 cells exposed to glucose-free culture medium for 8 to 24 h were significantly elevated compared with those in control medium. Concomitantly, [³H]L-leucine uptake activity was increased, suggesting that LAT1 transport activity is induced under glucose-deprivation. To determine the transcriptional activity of the LAT1 gene under glucose-free conditions, the promoter activity of the LAT1 gene of approximately 2 kbp (-1958 bp to +70 bp) in TR-iBRB2 cells was assayed using a dual-luciferase reporter assay system. The transcriptional activity of the 2 kbp LAT1 promoter under the glucose-free conditions was 1.7-fold greater than that under normal glucose conditions. The presence of an activator site(s) between -162 bp and -155 bp was indicated by the low activities exhibited by the construct spanning this region and mutagenesis. These results suggest that the glucose deprivation sensitivity of LAT1 expression is transcriptionally regulated, and cis-elements within the LAT1 promoter region from -162 bp to -155 bp mediate this regulation.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Capilares/metabolismo , Endotélio Vascular/metabolismo , Glucose/metabolismo , Vasos Retinianos/metabolismo , Regulação para Cima , Sistema L de Transporte de Aminoácidos/genética , Animais , Transporte Biológico , Barreira Hematorretiniana , Linhagem Celular , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Genes Reporter , Isquemia/metabolismo , Leucina/metabolismo , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/metabolismo
9.
Hepatobiliary Pancreat Dis Int ; 10(1): 30-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21269932

RESUMO

BACKGROUND: The specificity in discriminating pancreatitis is limited in the positron emission tomography (PET) using Fluorine-18-fluorodeoxyglucose. Furthermore, PET is not widely available compared to the single photon emission computed tomography (SPECT). Since amino acids play a minor role in metabolism of inflammatory cells, the potential of the SPECT tracer, 3-[123I]iodo-L-alpha-methyltyrosine (123I-IMT), for detecting pancreatic cancer was examined in xenotransplantation models of human pancreatic carcinoma in mice. METHODS: 123I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors. Fused high-resolution-micro-SPECT (Hi-SPECT) and magnetic resonance imaging were performed. The gene expression level of L amino acid transport-system 1 (LAT1) was analyzed and correlated with tumor uptake of 123I-IMT. RESULTS: A high uptake of 123I-IMT was detected in all tumor-bearing mice. The median tumor-to-background ratio (T/B) was 12.1 (2.0-13.2) for orthotopic and 8.4 (1.8-11.1) for subcutaneous xenotransplantation, respectively. Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls. CONCLUSIONS: Our mouse model could show a high 123I-IMT uptake in pancreatic cancer. Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest. Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells. Since amino acids play a minor role in the metabolism of inflammatory cells, the potential for application of 123I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Sistema L de Transporte de Aminoácidos/metabolismo , Radioisótopos do Iodo , Imageamento por Ressonância Magnética/métodos , Metiltirosinas , Neoplasias Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Sistema L de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Humanos , Radioisótopos do Iodo/farmacocinética , Metiltirosinas/farmacocinética , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Transplante Heterólogo
10.
Am J Physiol Endocrinol Metab ; 297(3): E822-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19622785

RESUMO

The System L transporter facilitates cellular import of large neutral amino acids (AAs) such as Leu, a potent activator of the intracellular target of rapamycin (TOR) pathway, which signals for cell growth. System L is an AA exchanger, proposed to accumulate certain AAs by coupling to dissipation of concentration gradient(s) of exchange substrates generated by secondary active AA transporters such as System A (SNAT2). We addressed the hypothesis that this type of coupling (termed tertiary active transport) acts as an indirect mechanism to extend the range of AA stimulating TOR to those transported by both Systems A and L (e.g., Gln) through downstream enhancement of Leu accumulation. System A overexpression enabled Xenopus oocytes to accumulate substrate AAs (notably Ser, Gln, Ala, Pro, Met; totaling 2.6 nmol/oocyte) from medium containing a physiological AA mixture at plasma concentrations. Net accumulation of System L (4F2hc-xLAT1) substrates from this medium by System L-overexpressing oocytes was increased by 90% (from 0.7 to 1.35 nmol/oocyte; mainly Leu, Ile) when Systems A and L were coexpressed, coincident with a decline in accumulation of specific System A substrates (Gln, Ser, Met), as expected if the latter were also System L substrates and functional coupling of the transport Systems occurred. AA flux coupling was confirmed as trans-stimulation of Leu influx in System L-expressing oocytes by Gln injection (0.5 nmol/oocyte). The observed changes in Leu accumulation are sufficient to activate the TOR pathway in oocytes, although intracellular AA metabolism limits the potential for AA accumulation by tertiary active transport in this system.


Assuntos
Sistema A de Transporte de Aminoácidos/genética , Sistema L de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Expressão Gênica , Oócitos/metabolismo , Xenopus/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/fisiologia , Sistema L de Transporte de Aminoácidos/metabolismo , Sistema L de Transporte de Aminoácidos/fisiologia , Animais , Transporte Biológico/genética , Feminino , Expressão Gênica/fisiologia , Modelos Biológicos , Fatores de Tempo , Transfecção , Xenopus/metabolismo , beta-Alanina/análogos & derivados , beta-Alanina/farmacocinética
11.
J Nucl Med ; 48(12): 2063-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18056335

RESUMO

UNLABELLED: Expression of system L amino acid transporters (LAT) is strongly increased in many types of tumor cells. The purpose of this study was to demonstrate that (18)F-labeled amino acids, for example, 3-O-methyl-6-(18)F-fluoro-L-dopa ((18)F-OMFD), that accumulate in tumors via LAT represent an important class of imaging agents for visualization of tumors in vivo by PET. METHODS: (18)F-OMFD uptake kinetics, transport inhibition, and system L messenger RNA expression were studied in vitro in human adenocarcinoma (HT-29), squamous cell carcinoma (FaDu), macrophages (THP-1), and primary aortic endothelial cells (HAEC) and in vivo in the corresponding mouse tumor xenograft models. RESULTS: Uptake of (18)F-OMFD in all cell lines tested was mediated mainly by the sodium-independent high-capacity LAT. We found higher uptake in FaDu cells (V(max), 10.6 +/- 1.1 nmol/min x mg of cell protein) and in the corresponding FaDu tumor xenografts than in the other cells and corresponding xenograft models studied. Quantitative messenger RNA analysis revealed that tumor cells and xenografts have a higher expression of LAT1 than do HAEC and THP-1 macrophages. However, only in the FaDu tumor model did an increased (18)F-OMFD uptake seem to be explained by increased LAT expression. Furthermore, we demonstrated a high expression of LAT4, a recently identified LAT. CONCLUSION: Our findings support the hypothesis that (18)F-OMFD is a tracer for visualization of tumor cells. (18)F-OMFD particularly seems to be a suitable tracer for diagnostic imaging of amino acid transport in poorly differentiated squamous cell head and neck carcinoma with increased LAT1 and LAT4 expression.


Assuntos
Adenocarcinoma/metabolismo , Sistema L de Transporte de Aminoácidos/genética , Carcinoma de Células Escamosas/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Radioisótopos de Flúor , Transportador 1 de Aminoácidos Neutros Grandes/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Di-Hidroxifenilalanina/farmacocinética , Proteína-1 Reguladora de Fusão/genética , Células HT29 , Humanos , Masculino , Camundongos , Transplante de Neoplasias , RNA Mensageiro/análise , Transplante Heterólogo , Células Tumorais Cultivadas
12.
J Biol Chem ; 280(12): 12002-11, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15659399

RESUMO

System L amino acid transporters mediate the movement of bulky neutral amino acids across cell membranes. Until now three proteins that induce system L activity have been identified: LAT1, LAT2, and LAT3. The former two proteins belong to the solute carrier family 7 (SLC7), whereas the latter belongs to SLC43. In the present study we present a new cDNA, designated LAT4, which also mediates system L activity when expressed in Xenopus laevis oocytes. Human LAT4 exhibits 57% identity to human LAT3. Like LAT3, the amino acid transport activity induced by LAT4 is sodium-, chloride- and pH-independent, is not trans-stimulated, and shows two kinetic components. The low affinity component of LAT4 induced activity is sensitive to the sulfhydryl-specific reagent N-ethylmaleimide but not that with high affinity. Mutation in LAT4 of the SLC43 conserved serine 297 to alanine abolishes sensitivity to N-ethylmaleimide. LAT4 activity is detected at the basolateral membrane of PCT kidney cells. In situ hybridization experiments show that LAT4 mRNA is restricted to the epithelial cells of the distal tubule and the collecting duct in the kidney. In the intestine, LAT4 is mainly present in the cells of the crypt.


Assuntos
Sistema L de Transporte de Aminoácidos/genética , Sequência de Aminoácidos , Sistema L de Transporte de Aminoácidos/análise , Sistema L de Transporte de Aminoácidos/fisiologia , Sistemas de Transporte de Aminoácidos Básicos/análise , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/fisiologia , Animais , Etilmaleimida/farmacologia , Feminino , Humanos , Hibridização In Situ , Intestinos/química , Rim/química , Camundongos , Dados de Sequência Molecular , Fenilalanina/metabolismo , RNA Mensageiro/análise , Xenopus laevis
14.
Insect Biochem Mol Biol ; 33(8): 815-27, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12878228

RESUMO

We isolated two cDNAs from the mosquito Aedes aegypti, an L-amino acid transporter (AeaLAT) and a CD98 heavy chain (AeaCD98hc). Expression of AeaCD98hc or AeaLAT alone in Xenopus oocyte did not induce amino acid transport activity. However, co-expression of AeaCD98hc and AeaLAT, which are postulated to form a heterodimer protein linked through a disulfide bond, showed significant increase in amino acid transport activity. This heterodimeric protein showed uptake specificity for large neutral and basic amino acids. Small acidic neutral amino acids were poor substrates for this transporter. Neutral amino acid (leucine) uptake activity was partially Na+ dependent, because leucine uptake was approximately 44% lower in the absence of Na+ than in its presence. However, basic amino acid (lysine) uptake activity was completely Na+ independent at pH of 7.4. Extracellular amino acid concentration could be the main factor that determined amino acid transport. These results suggest the heteromeric protein is likely a uniporter mediating diffusion of amino acids in the absence of ions. The AeaLAT showed high level expression in the gastric caeca, Malpighian tubules and hindgut of larvae. In caeca and hindgut expression was in the apical cell membrane. However, in Malpighian tubules and in midgut, the latter showing low level expression, the transporter was detected in the basolateral membrane. This expression profile supports the conclusion that this AeaLAT is a nutrient amino acid transporter.


Assuntos
Aedes/genética , Aedes/fisiologia , Sistema L de Transporte de Aminoácidos/biossíntese , Sistema L de Transporte de Aminoácidos/genética , Regulação da Expressão Gênica , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Sequência de Aminoácidos , Aminoácidos/farmacocinética , Animais , Primers do DNA , DNA Complementar , Difusão , Sistema Digestório/química , Fenômenos Fisiológicos do Sistema Digestório , Larva/química , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Oócitos , Filogenia , Reação em Cadeia da Polimerase , Xenopus
15.
Nucl Med Biol ; 30(1): 31-7, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493540

RESUMO

We examined transport of 3-[(125)I]iodo-alpha-methyl-L-tyrosine ([(125)I]IMT) in Xenopus laevis oocytes co-expressing human L-type amino acid transporter 1 (a component of system L) and human 4F2hc. Human LAT1 mediated transport of [(125)I]IMT. [(125)I]IMT uptake was decreased by the presence of L-isomers of Cys, Leu, Ileu, Phe, Met, Tyr, His, Trp and Val and D-isomers of Leu, Phe and Met. Human LAT1-mediated [(125)I]IMT uptake was highly stereoselective for the L-isomers of Tyr, His, Trp, Val and Ileu. To examine the effects of 3-iodination and alpha-methylation on IMT transport, kinetic parameters of IMT were compared with those of mother Tyr and 3-[(125)I]iodo-L-tyrosine (3-I-Tyr). Uptake of Tyr, 3-I-Tyr and [(125)I]IMT followed Michaelis-Menten kinetics, with K(m) values of 29.0 +/- 5.1, 12.6 +/- 6.1 and 22.6 +/- 4.1 microM, respectively. Neither the alpha-methyl group nor the size of the 3-iodinated Tyr residue was an obstacle to transport via hLAT1. Furthermore, affinity of IMT for hLAT1 is higher than that of the natural parent tyrosine. The level of efflux mediated by hLAT1 was highly stimulated by extracellularly applied L-Leu, suggesting exchange of [(125)I]IMT and L-Leu via hLAT1.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Metiltirosinas/farmacocinética , Oócitos/diagnóstico por imagem , Oócitos/metabolismo , Sistema L de Transporte de Aminoácidos/genética , Animais , Células Cultivadas , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Humanos , Isomerismo , Metiltirosinas/química , Oócitos/química , Cintilografia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Proteínas Recombinantes/metabolismo , Valores de Referência , Tirosina/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...